**External Resources**
1. [ProbStats](https://probstats.org/) for visual plots.
2. ProbOnto (Probability Distribution Ontology) for data about distributions and their relationships.
3. [[SIPMath 3.0]] for data structures for probability distributions.
---
## Probability Distributions
- **Uniform** (a Die Roll)
- **Binomial** (a Coin Flip)
- **Poisson** (N Coins Flips)
- **Normal** (Many Coin Flips)
- **t-Distribution**
- **Exponential** ()
- **Gamma** ()
Relationships
- **Binomial → Poisson**: As n→∞,p→0,np=λn \to \infty, p \to 0, np = \lambdan→∞,p→0,np=λ.
- **Binomial → Normal**: As n→∞,np and $n(1−p)n \to \infty$, np \text{ and } n(1-p)n→∞,np and n(1−p) are large.
- **Poisson → Normal**: As λ\lambdaλ becomes large.
**Exponential Family**
$f(x∣θ)=h(x)exp(η(θ)T(x)−A(θ))$
### Binomial
Tossing a coin n times, how likely to get k heads?
### Poisson
### Normal
### Exponential
---
## Central Concepts
- **Central Limit Theorem**